Recommending in Context: A Spreading Activation Model that is Independent of the Type of Recommender System and Its Contents
نویسندگان
چکیده
Current recommender systems make recommendations mostly independent of context. The recommender systems field is starting to acknowledge that systems need to incorporate the context in or for which they make recommendations to improve results. We show how recommender systems can make use of CASAN nets, our extension of the classical associative spreading activation network formalism. In CASAN nets, content nodes are not just connected by plain directed weighted links but also have associated link type and context nodes. Our spreading activation algorithm incorporates mechanisms to handle these two new functions of nodes. Contextual behavior is achieved because the activation values of link type and context nodes modulate the strengths of the links they are associated with. Thus, the activation pattern of the nodes associated with links establishes a context. This changes the network topology on whose basis a system chooses recommendations.
منابع مشابه
A Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information
The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...
متن کاملIMPROVE THE RECOMMENDER SYSTEM USING SEMANTIC WEB
To buy his/her necessities such as books, movies, CD, music, etc., one always trusts others’ oral and written consultations and offers and include them in his/her decisions. Nowadays, regarding the progress of technologies and development of e-business in websites, a new age of digital life has been commenced with the Recommender systems. The most important objectives of these systems include a...
متن کاملA New WordNet Enriched Content-Collaborative Recommender System
The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommen...
متن کاملUse of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملسیستم پیشنهاد دهنده زمینهآگاه برای انتخاب گوشی تلفن همراه با ترکیب روشهای تصمیمگیری جبرانی و غیرجبرانی
Recommender systems suggest proper items to customers based on their preferences and needs. Needed time to search is reduced and the quality of customer’s choice is increased using recommender systems. The context information like time, location and user behaviors can enhance the quality of recommendations and customer satisfication in such systems. In this paper a context aware recommender sys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006